Foundations Of Deep Reinforcement Learning Av Laura Graesser, Wah Loon Keng

Foundations Of Deep Reinforcement Learning Av Laura Graesser, Wah Loon Keng

The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and PracticeDeep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL......
fra 489,-
Tilgjengelig i 2 butikker
Frakt og levering
Beskrivelse
<b>The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice</b><br><br>Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games¿such as Go, Atari games, and DotA 2¿to robotics. <br><br><div><i><b>Foundations of Deep Reinforcement Learning</b></i> is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. </div><div><br></div><div> This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working und
Forhåndsbestill
Frakt og levering
Beskrivelse
In just a few years, deep reinforcement learning (DRL) systems such as DeepMinds DQN have yielded remarkable results. This hybrid approach to machine learning shares many similarities with human learnin its unsupervised self-learning, self-discovery of strategies, usage of memory, balance of exploration and exploitation, and its exceptional flexibility. Exciting in its own right, DRL may presage even more remarkable advances in general artificial intelligence. Deep Reinforcement Learning in Python: A Hands-On Introductionis the fastest and most accessible way to get started with DRL. The authors teach through practical hands-on examples presented with their advanced OpenAI Lab framework. While providing a solid theoretical overview, they emphasize building intuition for the theory, rather than a deep mathematical treatment of results. Coverage includes: Components of an RL system, including environment and agents Value-based algorithms: SARSA, Q-learning and extensions, offline learning Policy-based algorithms: REINFORCE and extensions; comparisons with value-based techniques Combined methods: Actor-Critic and extensions; scalability through async methods Agent evaluation Advanced and experimental techniques, and more How to achieve breakthrough machine learning performance by combining deep neural networks with reinforcement learning Reduces the learning curve by relying on the authors’ OpenAI Lab framework: requires less upfront theory, math, and programming expertise Provides well-designed, modularized, and tested code examples with complete experimental data sets to illuminate the underlying algorithms Includes case studies, practical tips, definitions, and other aids to learning and mastery Prepares readers for exciting future advances in artificial general intelligence The accessible, hands-on, full-color tutorial for building practical deep reinforcement learning solutions How to achieve breakthrough machine learning performance by combining deep neural networks with reinforcement learning Reduces the learning curve by relying on the authors’ OpenAI Lab framework: requires less upfront theory, math, and programming expertise Provides well-designed, modularized, and tested code examples with complete experimental data sets to illuminate the underlying algorithms Includes case studies, practical tips, definitions, and other aids to learning and mastery Prepares readers for exciting future advances in artificial general intelligence

Produktinformasjon

Oppdag Grunnlaget for Dyp Forsterkningslæring

Er du klar for å ta dypdykk inn i deep reinforcement learning? Da er Foundations Of Deep Reinforcement Learning Av Laura Graesser, Wah Loon Keng akkurat det du trenger! Denne boken gir deg en praktisk og grundig innføring i en av de mest lovende områdene innen kunstig intelligens.

Hva Du Kan Forvente av Boken

Med Foundations Of Deep Reinforcement Learning kan du forvente en komplett guide til de essensielle komponentene i et RL-system, inkludert:

  • Miljø og agenter: Lær hvordan disse to elementene interagerer for å skape læringsopplevelser.
  • Verdibasert algoritmer: Fordyp deg i SARSA, Q-learning og deres variasjoner.
  • Politikk-basert algoritmer: Oppdag REINFORCE og hvordan de sammenlignes med verdibaserte teknikker.
  • Kombinerte metoder: Forstå Actor-Critic og hvordan async metoder kan forbedre skalerbarheten.

En Håndgripelig Tilnærming

Boken fokuserer på praktiske eksempler og viser deg hvordan du kan bygg en intuitiv forståelse for teori, uten å dykke altfor dypt inn i tunge matematiske konsepter. Her er noen av de viktigste funksjonene:

  • Brukervennlig rammeverk: Reduser læringskurven ved å bruke forfatterens OpenAI Lab-rammeverk. Du trenger ikke å være programmeringsekspert!
  • Modulære kodeeksempler: Se hvordan praktiske tips og kodeeksempler kan illuminere algoritmer som ligger til grunn for dyp læring.
  • Fremtidig innovasjon: Bli forberedt på spennende fremskritt innen generell kunstig intelligens.

Utforsk Mulighetene med Dyp Forsterkningslæring

Uansett om du er nybegynner eller har en viss erfaring med maskinlæring, gir Foundations Of Deep Reinforcement Learning Av Laura Graesser, Wah Loon Keng deg de verktøyene du trenger for å lykkes. Grab boken i dag, og start din reise mot en dypere forståelse av kunstig intelligens!

Spesifikasjon

Produkt
ProduktnavnGraesser Laura Foundations of Deep Reinforcement Learning
MerkeOther Brand

Pris og prishistorikk

Akkurat nå er 489,- den billigste prisen for Foundations Of Deep Reinforcement Learning Av Laura Graesser, Wah Loon Keng blant 2 butikker hos Prisradar. Sjekk også vår topp 5-rangering av beste samfunnsvitenskap for å være sikker på at du gjør det beste kjøpet.

Prisutvikling:
Fallende
Laveste pris:
391,-
Gjennomsnittspris:
449,-
Høyeste pris:
528,-
Beste tilbudet:
norli.no
Tilgjengelig