Quantized Compressive Sampling for Structured Signal Estimation

Quantized Compressive Sampling for Structured Signal Estimation

This thesis investigates different approaches to enable the use of compressed sensing (CS)-based acquisition devices in resource-constrained environments relying on cheap, energy-efficient sensors. We consider the acquisition of structured low-complexity signals from excessively quantized 1-bit observations, as well as partia......
fra 681,63
Tilgjengelig i 1 butikker
Forhåndsbestill
Frakt og levering
Beskrivelse
This thesis investigates different approaches to enable the use of compressed sensing (CS)-based acquisition devices in resource-constrained environments relying on cheap, energy-efficient sensors. We consider the acquisition of structured low-complexity signals from excessively quantized 1-bit observations, as well as partial compressive measurements collected by one or multiple sensors. In both scenarios, the central goal is to alleviate the complexity of sensing devices in order to enable signal acquisition by simple, inexpensive sensors.In the first part of the thesis, we address the reconstruction of signals with a sparse Fourier transform from 1-bit time domain measurements. We propose a modification of the binary iterative hard thresholding algorithm, which accounts for the conjugate symmetric structure of the underlying signal space. In this context, a modification of the hard thresholding operator is developed, whose use extends to various other (quantized) CS recovery algorithms. In addition to undersampled measurements, we also consider oversampled signal representations, in which case the measurement operator is deterministic rather than constructed randomly. Numerical experiments verify the correct behavior of the proposed methods.The remainder of the thesis focuses on the reconstruction of group-sparse signals, a signal class in which nonzero components are assumed to appear in nonoverlapping coefficient groups. We first focus on 1-bit quantized Gaussian observations and derive theoretical guarantees for several reconstruction schemes to recover target vectors with a desired level of accuracy. We also address recovery based on dithered quantized observations to resolve the scale ambiguity inherent in the 1-bit CS model to allow for the recovery of both direction and magnitude of group-sparse vectors.In the last part, the acquisition of group-sparse vectors by a collection of independent sensors, which each observe a different portion of a target vector, is considered. Generalizing earlier results for the canonical sparsity model, a bound on the number of measurements required to allow for stable and robust signal recovery is established. The proof relies on a powerful concentration bound on the suprema of chaos processes. In order to establish our main result, we develop an extension of Maurey’s empirical method to bound the covering number of sets which can be represented as convex combinations of elements in compact convex sets.

Produktinformasjon

Utforsk Quantized Compressive Sampling for Structured Signal Estimation

Er du på jakt etter innovative løsninger for signalgjenkjenning? Da er Quantized Compressive Sampling for Structured Signal Estimation løsningen for deg! Denne banebrytende oppgaven utforsker hvordan vi kan utnytte komprimert sanse teknologi i ressursbegrensede miljøer, ved hjelp av rimelige og energieffektive sensorer. Med fokus på lav-kompleksitetssignaler fra 1-bits observasjoner, tilbyr dette produktet verktøyene du trenger for avansert signalbehandling.

Hovedfunksjoner ved Quantized Compressive Sampling

  • Modifisert algoritme: En forbedring av den binære iterative hard thresholding-algoritmen for mer nøyaktig signalgjenoppbygging.
  • Håndtering av kvantisering: Optimalisering gjennom 1-bit tidsgjennomstrømning og muligheten for oversampling.
  • Gruppeklar signaløkning: Gjenkjenning av signalsammensetninger der ikke-nullkomponentene finnes i separate grupper, noe som gir bedre presisjon.
  • Rimelighet: Utviklet for bruk i kontekster der man kanskje ikke har tilgang til kostbare sensing-enheter.

Ferdigheter og aktuell bruk

Den utviklede metoden i Quantized Compressive Sampling for Structured Signal Estimation gir teoretisk garantier for nøyaktighet og stabil gjenoppbygging av måletegn. Uavhengige sensorer som observerer forskjellige deler av et målvektor gir ytterligere muligheter for robust signalbehandling.

Konklusjon

Gjør deg klar til å ta signalbehandling til nye høyder med Quantized Compressive Sampling for Structured Signal Estimation. Dette produktet er perfekt for forskere, ingeniører, og teknologientusiaster som ønsker å ta fatt på utfordringene i moderne datasynkronisering og signalanalytiske oppgaver. Se frem til de mange mulighetene dette innovative verktøyet vil bringe!

Spesifikasjon

Produkt
ProduktnavnQuantized Compressive Sampling for Structured Signal Estimation
MerkeOther Brand

Pris og prishistorikk

Akkurat nå er 681,63 den billigste prisen for Quantized Compressive Sampling for Structured Signal Estimation blant 1 butikker hos Prisradar. Sjekk også vår topp 5-rangering av beste teknikk, ingeniør og primær for å være sikker på at du gjør det beste kjøpet.

Prisutvikling:
Vokser
Laveste pris:
623,2
Gjennomsnittspris:
678,-
Høyeste pris:
681,63
Beste tilbudet:
platekompaniet.no
Ikke tilgjengelig