Tree-Based Methods for Statistical Learning in R

Tree-Based Methods for Statistical Learning in R

Tree-based Methods for Statistical Learning in R provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Buil......
fra 1 099,-
Tilgjengelig i 2 butikker
Frakt og levering
Beskrivelse
<p><b><i>Tree-based Methods for Statistical Learning in R</i></b> provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Building a strong foundation for how individual decision trees work will help readers better understand tree-based ensembles at a deeper level, which lie at the cutting edge of modern statistical and machine learning methodology.</p><p>The book follows up most ideas and mathematical concepts with code-based examples in the R statistical language; with an emphasis on using as few external packages as possible. For example, users will be exposed to writing their own random forest and gradient tree boosting functions using simple for loops and basic tree fitting software (like <b>rpart</b> and <b>party</b>/<b>partykit</b>), and more. The core chapters also end with a detailed section on relevant softw
Forhåndsbestill
Frakt og levering
Beskrivelse
Tree-based Methods for Statistical Learning in R provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Building a strong foundation for how individual decision trees work will help readers better understand tree-based ensembles at a deeper level, which lie at the cutting edge of modern statistical and machine learning methodology.The book follows up most ideas and mathematical concepts with code-based examples in the R statistical language; with an emphasis on using as few external packages as possible. For example, users will be exposed to writing their own random forest and gradient tree boosting functions using simple for loops and basic tree fitting software (like rpart and party/partykit), and more. The core chapters also end with a detailed section on relevant software in both R and other opensource alternatives (e.g., Python, Spark, and Julia), and example usage on real data sets. While the book mostly uses R, it is meant to be equally accessible and useful to non-R programmers.Consumers of this book will have gained a solid foundation (and appreciation) for tree-based methods and how they can be used to solve practical problems and challenges data scientists often face in applied work.Features:Thorough coverage, from the ground up, of tree-based methods (e.g., CART, conditional inference trees, bagging, boosting, and random forests).A companion website containing additional supplementary material and the code to reproduce every example and figure in the book.A companion R package, called treemisc, which contains several data sets and functions used throughout the book (e.g., there’s an implementation of gradient tree boosting with LAD loss that shows how to perform the line search step by updating the terminal node estimates of a fitted rpart tree).Interesting examples that are of practical use; for example, how to construct partial dependence plots from a fitted model in Spark MLlib (using only Spark operations), or post-processing tree ensembles via the LASSO to reduce the number of trees while maintaining, or even improving performance.

Produktinformasjon

Oppdag Tree-Based Methods for Statistical Learning in R

Er du ute etter en grundig og praktisk innføring i trebaserte metoder for statistisk læring? Da er Tree-Based Methods for Statistical Learning in R boken for deg! Denne boka gir deg et solid fundament i både enkeltstående beslutningstrær og ensemblemetoder. Med en kombinasjon av teori og kodebaserte eksempler i R, står du godt rustet til å forstå og benytte disse kraftige verktøyene.

Hva kan du forvente?

  • Helhetlig dekning: Boken er delt inn i to hoveddeler; del I fokuserer på individuelle beslutningstrær, mens del II utforsker ensemblemetoder som bagging og boosting.
  • Praktiske eksempler: For hver teori følger det med konkrete kodeeksempler slik at du kan se hvordan du implementerer teorien i praksis.
  • Tilgjengelighet: Selv om boken prioriterer R, er den designet for å være nyttig også for de som bruker andre programmeringsspråk som Python og Julia.
  • Komplementære ressurser: Få tilgang til en spesiallaget R-pakke kalt treemisc, som inneholder datasett og funksjoner relatert til temaene i boken.

Så hvorfor velge Tree-Based Methods for Statistical Learning in R?

Boken gir ikke bare en unik kombinasjon av teori og praksis, men engasjerer også leseren med interessante og relevante eksempler fra virkelig data. Oppdag hvordan du kan lage delvise avhengighetsplott eller hvordan du kan forbedre ytelsen ved å bruke LASSO for å bearbeide treensemble. Dette er metoder som virkelig kan hjelpe deg og teamet ditt i dataanalysearbeidet.

Ta steget mot bedre statistisk læring

Ikke la deg skremme av kunnskapskløften! Med Tree-Based Methods for Statistical Learning in R får du et verktøy som bryter ned barrierene for hvordan trebaserte metoder anvendes i det moderne datavitenskapelige arbeidet. Er du klar til å øke din kompetanse og bli en mester innen statistisk læring?

Spesifikasjon

Produkt
ProduktnavnTree-Based Methods for Statistical Learning in R
MerkeOther Brand

Pris og prishistorikk

Akkurat nå er 1 099,- den billigste prisen for Tree-Based Methods for Statistical Learning in R blant 2 butikker hos Prisradar. Sjekk også vår topp 5-rangering av beste matematikk og naturfag for å være sikker på at du gjør det beste kjøpet.

Prisutvikling:
Stabil
Laveste pris:
1 099,-
Gjennomsnittspris:
1 099,-
Høyeste pris:
1 099,-
Beste tilbudet:
norli.no
Tilgjengelig